
TOSDIS
FINANCE

STAKEMASTER
SMART

CONTRACT
AUDIT

March	01,	2021

MixBytes()

CONTENTS
1.INTRODUCTION... 1

DISCLAIMER.. 1

PROJECT OVERVIEW.. 1

SECURITY ASSESSMENT METHODOLOGY... 2

EXECUTIVE SUMMARY... 4

PROJECT DASHBOARD... 4

2.FINDINGS REPORT.. 6

2.1.CRITICAL.. 6

2.2.MAJOR... 6

MJR-1 Wrongly increased participants amount.................................. 6

MJR-2 Potentially differentiating message senders........................... 7

2.3.WARNING... 8

WRN-1 Non-explicit multiplier computation checks............................ 8

WRN-2 Keep invariant burnPercent <= divider 9

WRN-3 Restrict deflationary tokens... 10

2.4.COMMENTS... 11

CMT-1 Misleading docs.. 11

CMT-2 Unrestricted emergency withdrawal.................................... 12

3.ABOUT MIXBYTES.. 13

1.INTRODUCTION

1.1 DISCLAIMER
The audit makes no statements or warranties about utility of the code, safety of

the code, suitability of the business model, investment advice, endorsement of the

platform or its products, regulatory regime for the business model, or any other

statements about fitness of the contracts to purpose, or their bug free status. The

audit documentation is for discussion purposes only. The information presented in

this report is confidential and privileged. If you are reading this report, you

agree to keep it confidential, not to copy, disclose or disseminate without the

agreement of TosDis Finance. If you are not the intended recipient(s) of this

document, please note that any disclosure, copying or dissemination of its content

is strictly forbidden.

1.2 PROJECT OVERVIEW
TosDis is a p2p lending platform that runs on Ethereum-based Smart Contracts to

create a safe and efficient environment where borrowers worldwide have fast and

convenient access to loans, and lenders can find high-yield investment

opportunities.

1

https://tosdis.finance/

1.3 SECURITY ASSESSMENT METHODOLOGY
At least 2 auditors are involved in the work on the audit who check the

provided source code independently of each other in accordance with the

methodology described below:

01 "Blind" audit includes:

> Manual code study

> "Reverse" research and study of the architecture of the code based on the

source code only

Stage goal:

Building an independent view of the project's architecture

Finding logical flaws

02 Checking the code against the checklist of known vulnerabilities includes:

> Manual code check for vulnerabilities from the company's internal checklist

> The company's checklist is constantly updated based on the analysis of

hacks, research and audit of the clients' code

Stage goal:

Eliminate typical vulnerabilities (e.g. reentrancy, gas limit, flashloan

attacks, etc.)

03 Checking the logic, architecture of the security model for compliance with

the desired model, which includes:

> Detailed study of the project documentation

> Examining contracts tests

> Examining comments in code

> Comparison of the desired model obtained during the study with the reversed

view obtained during the blind audit

Stage goal:

Detection of inconsistencies with the desired model

04 Consolidation of the reports from all auditors into one common interim report

document

> Cross check: each auditor reviews the reports of the others

> Discussion of the found issues by the auditors

> Formation of a general (merged) report

Stage goal:

Re-check all the problems for relevance and correctness of the threat level

Provide the client with an interim report

05 Bug fixing & re-check.

> Client fixes or comments on every issue

> Upon completion of the bug fixing, the auditors double-check each fix and

set the statuses with a link to the fix

Stage goal:

Preparation of the final code version with all the fixes

06 Preparation of the final audit report and delivery to the customer.

2

Findings discovered during the audit are classified as follows:

FINDINGS SEVERITY BREAKDOWN

Level Description Required action

Critical Bugs leading to assets theft, fund access
locking, or any other loss funds to be
transferred to any party

Immediate action
to fix issue

Major Bugs that can trigger a contract failure.
Further recovery is possible only by manual
modification of the contract state or
replacement.

Implement fix as
soon as possible

Warning Bugs that can break the intended contract
logic or expose it to DoS attacks

Take into
consideration and
implement fix in
certain period

Comment Other issues and recommendations reported
to/acknowledged by the team

Take into
consideration

Based on the feedback received from the Customer's team regarding the list of

findings discovered by the Contractor, they are assigned the following statuses:

Status Description

Fixed Recommended fixes have been made to the project code and no
longer affect its security.

Acknowledged The project team is aware of this finding. Recommendations for
this finding are planned to be resolved in the future. This
finding does not affect the overall safety of the project.

No issue Finding does not affect the overall safety of the project and
does not violate the logic of its work.

3

1.4 EXECUTIVE SUMMARY
The audited scope implements custom-token staking pools creation and management.

Such staking pools are fixed-supply pools and distribute the reward according to

the amount of time the particular participant had it's funds staked. Fees for pool

management are being payed in deflationary token.

1.5 PROJECT DASHBOARD

Client TosDis Finance

Audit name StakeMaster

Initial version be50dbf8a52a8f919694498bf30394d328d88fbb

Final version 2e4aad91a77318a1134fa1562031f9634b46e705

SLOC 285

Date 2021-02-15 - 2021-03-01

Auditors engaged 2 auditors

FILES LISTING

FeeToken.sol FeeToken.sol

StakeMaster.sol StakeMaster.sol

StakingPool.sol StakingPool.sol

ERC20Basic.sol ERC20Basic.sol

4

https://github.com/tosdis/TosDisFinance/tree/be50dbf8a52a8f919694498bf30394d328d88fbb/StakeMaster/contracts/FeeToken.sol
https://github.com/tosdis/TosDisFinance/tree/be50dbf8a52a8f919694498bf30394d328d88fbb/StakeMaster/contracts/StakeMaster.sol
https://github.com/tosdis/TosDisFinance/tree/be50dbf8a52a8f919694498bf30394d328d88fbb/StakeMaster/contracts/StakingPool.sol
https://github.com/tosdis/TosDisFinance/tree/be50dbf8a52a8f919694498bf30394d328d88fbb/StakeMaster/contracts/ERC20Basic.sol

FINDINGS SUMMARY

Level Amount

Critical 0

Major 2

Warning 3

Comment 2

CONCLUSION

Smart contracts have been audited and several suspicious places have been spotted.

During the audit two issues were marked as major because they could lead to some

undesired behavior, also several warnings and comments were found and discussed

with the client. After working on the reported findings all of them were resolved

or acknowledged (if the problem was not critical). So, the contracts are assumed as

secure to use according to our security criteria. Final commit identifier with all

fixes: 2e4aad91a77318a1134fa1562031f9634b46e705 .

5

2.FINDINGS REPORT

2.1 CRITICAL
Not Found

2.2 MAJOR

MJR-1 Wrongly increased participants amount

File StakingPool.sol

Severity Major

Status Fixed at 2e4aad91

DESCRIPTION

At line StakingPool.sol#L120 contract increases participants amount, that happens

if user.amount is zero, however if user will provide zero _amountToStake

 participants also will increased. So somebody can increase participants infinitely

by calling stakeTokens with zero stake.

RECOMMENDATION

We recommend increase participants only if _amountToStake not zero

6

https://github.com/tosdis/TosDisFinance/blob/be50dbf8a52a8f919694498bf30394d328d88fbb/StakeMaster/contracts/StakingPool.sol
https://github.com/tosdis/TosDisFinance/commit/2e4aad91a77318a1134fa1562031f9634b46e705
https://github.com/tosdis/TosDisFinance/blob/be50dbf8a52a8f919694498bf30394d328d88fbb/StakeMaster/contracts/StakingPool.sol#L120

MJR-2 Potentially differentiating message senders

File FeeToken.sol

Severity Major

Status Fixed at 2e4aad91

DESCRIPTION

This warning is about inconsistent message sender address source (msg.sender and

 _msgSender()) usage in here: FeeToken.sol#L37, FeeToken.sol#L39, FeeToken.sol#L40.

This can lead to the incorrect message sender address choice in case, for example,

particular function call was a relayed call or meta-transaction-related call.

RECOMMENDATION

It is recommended to switch to some particular message sender address retrieval

method to avoid double-ownership (or misownership). In particular, using

 AccessContolList is better to choose _mseSender() .

7

https://github.com/tosdis/TosDisFinance/tree/be50dbf8a52a8f919694498bf30394d328d88fbb/StakeMaster/contracts/FeeToken.sol
https://github.com/tosdis/TosDisFinance/commit/2e4aad91a77318a1134fa1562031f9634b46e705
https://github.com/tosdis/TosDisFinance/tree/be50dbf8a52a8f919694498bf30394d328d88fbb/StakeMaster/contracts/FeeToken.sol#L37
https://github.com/tosdis/TosDisFinance/tree/be50dbf8a52a8f919694498bf30394d328d88fbb/StakeMaster/contracts/FeeToken.sol#L39
https://github.com/tosdis/TosDisFinance/tree/be50dbf8a52a8f919694498bf30394d328d88fbb/StakeMaster/contracts/FeeToken.sol#L40

2.3 WARNING

WRN-1 Non-explicit multiplier computation checks

File StakingPool.sol

Severity Warning

Status Fixed at 2e4aad91

DESCRIPTION

This warning is about potentially faulty implicit checks in getMultiplier

function in here: StakingPool.sol#L66.

This function seems to suppose to always return some valid value (even if

particular input arguments are not valid), and business logic implicitly supposes

that as well. Unfortunately, getMultiplier function returns valid value 0 in case

 _from and _to arguments are incorrect in relation to finishBlock variable, but

does not return any valid value in case _from and _to arguments are incorrect

among themselves. This can lead to the business logic implicitly assuming

 getMultiplier functions always returns something valid failure, for example, in

here: StakingPool.sol#L104.

RECOMMENDATION

It is recommended to either consider getMultiplier function returning valid values

for every case (0 for all the incorrect arguments cases for example), or refactor

the application logic to support this function unwinding.

8

https://github.com/tosdis/TosDisFinance/tree/be50dbf8a52a8f919694498bf30394d328d88fbb/StakeMaster/contracts/StakingPool.sol
https://github.com/tosdis/TosDisFinance/commit/2e4aad91a77318a1134fa1562031f9634b46e705
https://github.com/tosdis/TosDisFinance/tree/be50dbf8a52a8f919694498bf30394d328d88fbb/StakeMaster/contracts/StakingPool.sol#L66
https://github.com/tosdis/TosDisFinance/tree/be50dbf8a52a8f919694498bf30394d328d88fbb/StakeMaster/contracts/StakingPool.sol#L104

WRN-2 Keep invariant burnPercent <= divider

File StakeMaster.sol

Severity Warning

Status Fixed at 2e4aad91

DESCRIPTION

According logic at line StakeMaster.sol#L75 burnPercent should be less or equal

than divider , but in contract that invariant never checked

RECOMMENDATION

We recommend add particular check

9

https://github.com/tosdis/TosDisFinance/blob/be50dbf8a52a8f919694498bf30394d328d88fbb/StakeMaster/contracts/StakeMaster.sol
https://github.com/tosdis/TosDisFinance/commit/2e4aad91a77318a1134fa1562031f9634b46e705
https://github.com/tosdis/TosDisFinance/blob/be50dbf8a52a8f919694498bf30394d328d88fbb/StakeMaster/contracts/StakeMaster.sol#L75

WRN-3 Restrict deflationary tokens

File StakingPool.sol

Severity Warning

Status Acknowledged

DESCRIPTION

At line StakingPool.sol#L124 contract receives token by safeTransferFrom , and

increases user.amount by _amountToStake , however that approach doesn't work with

deflationary tokens because in that case real received amount will be less than

requested. That will break the whole logic of contract if somebody creates pool

with deflationary token.

RECOMMENDATION

We recommend to support such tokens or restrict contract usage with them

CLIENT'S COMMENTARY

We'll add notice to UI that deflationary and rebase tokens are not supported.

10

https://github.com/tosdis/TosDisFinance/blob/be50dbf8a52a8f919694498bf30394d328d88fbb/StakeMaster/contracts/StakingPool.sol
https://github.com/tosdis/TosDisFinance/blob/be50dbf8a52a8f919694498bf30394d328d88fbb/StakeMaster/contracts/StakingPool.sol#L124

2.4 COMMENTS

CMT-1 Misleading docs

File FeeToken.sol

Severity Comment

Status Fixed at 2e4aad91

DESCRIPTION

This comment is about misleading documentation mentioning there is a

 PAUSER_ROLE (and there is no such a role in this particular case) in here:

FeeToken.sol#L27.

RECOMMENDATION

It is recommended to remove misleading description.

11

https://github.com/tosdis/TosDisFinance/tree/be50dbf8a52a8f919694498bf30394d328d88fbb/StakeMaster/contracts/FeeToken.sol
https://github.com/tosdis/TosDisFinance/commit/2e4aad91a77318a1134fa1562031f9634b46e705
https://github.com/tosdis/TosDisFinance/tree/be50dbf8a52a8f919694498bf30394d328d88fbb/StakeMaster/contracts/FeeToken.sol#L27

CMT-2 Unrestricted emergency withdrawal

File StakingPool.sol

Severity Comment

Status Acknowledged

DESCRIPTION

This comment is about unrestricted emergency withdrawal function in here:

StakingPool.sol#L170 being possible to be called anytime with burning all the

rewards being earned.

RECOMMENDATION

Since it seems to be fine to make user reponsible to choose, to call the function

retrieving staked funds with or without rewards being taken care of, more

appropriate solution seems to be to introduce a so-called "Emergency mode" (with

introducing a function modifier to check if that emergency has happened), initiated

by some governance members. Probably only in case of emergency such a reward-

burning withdrawal should be available.

12

https://github.com/tosdis/TosDisFinance/tree/be50dbf8a52a8f919694498bf30394d328d88fbb/StakeMaster/contracts/StakingPool.sol
https://github.com/tosdis/TosDisFinance/tree/be50dbf8a52a8f919694498bf30394d328d88fbb/StakeMaster/contracts/StakingPool.sol#L170

3.ABOUT MIXBYTES
MixBytes is a team of blockchain developers, auditors and analysts keen on

decentralized systems. We build open-source solutions, smart contracts and

blockchain protocols, perform security audits, work on benchmarking and software

testing solutions, do research and tech consultancy.

BLOCKCHAINS

Ethereum

EOS

Cosmos

Substrate

TECH STACK

Python

Rust

Solidity

C++

CONTACTS

https://github.com/mixbytes/audits_public

https://mixbytes.io/

hello@mixbytes.io

https://t.me/MixBytes

https://twitter.com/mixbytes

13

https://github.com/mixbytes/audits_public
https://mixbytes.io/
mailto:hello@mixbytes.io
https://t.me/MixBytes
https://twitter.com/mixbytes

