

Customer: TosDis Finance
Date: Jan 14th, 2021

SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities fixed - upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
Tosdis Finance

Approved by Andrew Matiukhin | CTO Hacken OU

Type Token, Token sale, Exchange, Exchanges aggregator.
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review.
Repository
Commit
Deployed
contract

Timeline Jan 13th, 2021 – Jan 17th, 2021
Changelog Jan 14th,2021 – Initial Audit

Jan 17th,2021 – Remediation check

Table of contents

Executive Summary... 5

Severity Definitions.. 7

AS-IS overview.. 8

Conclusion... 15

Disclaimers.. 16

Introduction

Hacken OÜ (Consultant) was contracted by (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of Customer's
smart contract and its code review conducted between Jan 13th, 2021
– January 14th, 2021.

Remediation check was conducted Jan 17th, 2021

Scope

The scope of the project is smart contracts in the repository:
Contract deployment address:
Repository
Commit
Files:

DISToken.sol
TokenVesting.sol

We have scanned this smart contract for commonly known and more
specific vulnerabilities. Here are some of the commonly known
vulnerabilities that are considered:

Category Check Item

Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence

▪ Gas Limit and Loops

▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit

▪ Transaction-Ordering Dependence

▪ Style guide violation

▪ Costly Loop

▪ ERC20 API violation

▪ Unchecked external call

▪ Unchecked math

▪ Unsafe type inference

▪ Implicit visibility level

▪ Deployment Consistency

▪ Repository Consistency

▪ Data Consistency

Functional review ▪ Business Logics Review

▪ Functionality Checks

▪ Access Control & Authorization

▪ Escrow manipulation

▪ Token Supply manipulation

▪ Assets integrity

▪ User Balances manipulation

▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customers' smart contracts are
secure.

Our team performed an analysis of code functionality, manual
audit, and automated checks with Mythril and Slither. All issues
found during automated analysis were manually reviewed, and
important vulnerabilities are presented in the Audit overview
section. A general overview is presented in AS-IS section, and
all found issues can be found in the Audit overview section.

Security engineers found 1 critical, 1 medium and 2 informational
issues during the audit.

After the second review, Customers' smart contracts
contain 1 critical vulnerability.

After the third review, Customers' smart contracts contains no
issues.

Insecure Poor secured Secured Well-secured

You are

here

Graph 1. The distribution of vulnerabilities at initial audit

Graph 2. The distribution of vulnerabilities at 1st remediation check

Critical
25%

High
0%

Medium
25%

Low
0%

Lowest
50%

Critical High Medium Low Lowest

Critical
50%

High
0%

Medium
0%

Low
0%

Lowest
50%

Critical High Medium Low Lowest

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations,
and info statements can't affect smart contract
execution and can be ignored.

AS-IS overview

DISToken.sol

Description

DISToken is a submitted code implements burnable ERC20 token.
Token interfaces and implementations are inherited from
OpenZeppelin Contracts. Token has unlimited supply and could be
minted only by account with minter role.

Imports

DISToken contract has the following imports:

• import "@openzeppelin/contracts/access/AccessControl.sol";

• import "@openzeppelin/contracts/GSN/Context.sol";

• import
"@openzeppelin/contracts/token/ERC20/ERC20Burnable.sol";

Usages

DISToken contract hasn’t the following custom usages.

Structs

DISToken contract has no the following data structures.

Enums

DISToken contract has no custom enums.

Events

DISToken contract hasn’t the following events.

Modifiers

DISToken has no custom modifiers.

Fields

DISToken contract hasn’t following constants.

Functions

DISToken has following public functions:

• constructor
Visibility

public ERC20
Input parameters

• uint256 totalSupply,
• string memory name,
• string memory symbol,
• name,
• symbol.

Constraints
None
Events emit
None
Output
None

• mint
Description

Visibility
public virtual
Input parameters

• address to,
• uint256 amount.

Constraints
None
Events emit
None
Output
None

TokenVesting.sol

Description

TokenVesting is represents vault with vesting scheme inside. Each
account has vesting with start time, duration and interval
parameters. These are setting up for beneficiary during vesting
creation. Beneficiary has ability to postpone start date, this
function secured by requirements for start date and balance. Any
account could invoke release function and withdraw appropriate
amount of tokens. This amount calculated by releasableAmount view
function.

Imports

TokenVesting contract has the following imports:

• import "@openzeppelin/contracts/GSN/Context.sol";

• import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

• import "@openzeppelin/contracts/math/SafeMath.sol";

Usages

TokenVesting contract has custom usages:

• SafeMath for uint256;

Structs

TokenVesting contract has custom data structures:

• Vesting

Enums

TokenVesting contract has no custom enums.

Events

TokenVesting contract has the following events:

• Released(uint256 amount);

Modifiers

TokenVesting has no the following modifiers.

Fields

TokenVesting contract has following constants:

• IERC20 private _token;

• mapping (address => Vesting) private _vestings;

Functions

TokenVesting has following public functions:

• constructor
Visibility
public
Input parameters

o address token
Constraints
None
Events emit
None

Output
None

• getVesting
Description

Visibility
public view
Input parameters

• address beneficiary

Constraints
None
Events emit
None
Output

• uint256
• uint256
• uint256
• uint256
• uint256

• createVesting
Description

Visibility
public
Input parameters

• address sender,
• address beneficiary,
• uint256 start,
• uint256 interval,
• uint256 duration,
• uint256 amount

Constraints
None
Events emit
None
Output
None

• postponeVesting
Description

Visibility
external

Input parameters
• uint256 start

Constraints
None
Events emit
None
Output
None

• release
Description

Visibility
public
Input parameters

• address beneficiary
Constraints
None
Events emit

• Released(unreleased);
Output

 None

• releasableAmount
Description

Visibility
public view
Input parameters

• address beneficiary

Constraints
None
Events emit
None
Output

• uint256
• vestedAmount

Description

Visibility
public view
Input parameters

• address beneficiary
Constraints
None.
Events emit

None
Output

• uint256

Audit overview

 Critical

1. Functions transfer and transferFrom are not checked for
success and can return false value. Use SafeTransfer and
SafeTransferFrom functions instead.

Fixed before the second review.

2. `createVesting` function allows specifying an account from
where funds will be transferred. Such flow allows stealing
funds from accounts that sent an allowance transaction but
did not call the `createVesting` function yet.

We recommend removing the `sender` parameter and use the
message sender instead.

Fixed before the third review.

 Medium

1. Protect contacts by preventing of the reentrancy attack by
Reentrancy Guard. Apply it to all public and external
functions. Reentrancy Guard module helps to prevent reentrant
calls to a function. Inheriting from ReentrancyGuard will
make the nonReentrant modifier available and it could be
applied to functions to make sure there are no nested
(reentrant) calls to them.

Fixed before the second review.

 Lowest / Code style / Best Practice

1. createVesting and release functions could be implemented as
external instead of public.

Fixed before the second review.

Conclusion

Smart contracts within the scope were manually reviewed and
analyzed with static analysis tools. For the contract, high-level
description of functionality was presented in As-Is overview
section of the report.

Audit report contains all found security vulnerabilities and other
issues in the reviewed code.

Security engineers found 1 critical, 1 medium and 2 informational
issues during the audit.

After the second review, Customers' smart contracts
contain 1 critical vulnerability.

After the third review, Customers' smart contracts contains no
issues.

Violations in the following categories were found and addressed
to Customer:

Category Check Item Comments

Code review ▪ Data Consistency ▪ Data consistency can be
violated.

 ▪ Business Logics Review ▪ The source code was
received without
whitepaper.

 ▪ Style guide violation ▪ Several minor code-
style issues were
found.

 ▪ Assets integrity ▪ The transfer method can
lock up all fund
irreversibly.

 ▪ Reentrancy ▪ Lack of reentrancy
guard checks.

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in
accordance with the best industry practices at the date of this
report, in relation to cybersecurity vulnerabilities and issues
in smart contract source code, the details of which are disclosed
in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on security of the
code. It also cannot be considered as a sufficient assessment
regarding the utility and safety of the code, bugfree status or
any other statements of the contract. While we have done our best
in conducting the analysis and producing this report, it is
important to note that you should not rely on this report only -
we recommend proceeding with several independent audits and a
public bug bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform.
The platform, its programming language, and other software related
to the smart contract can have its vulnerabilities that can lead
to hacks. Thus, the audit can't guarantee the explicit security
of the audited smart contracts.

